All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Combining Floquet and Lyapunov techniques for time-dependent problems in optomechanics and electromechanics

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73601594" target="_blank" >RIV/61989592:15310/20:73601594 - isvavai.cz</a>

  • Result on the web

    <a href="https://iopscience.iop.org/article/10.1088/1367-2630/ab8cab/pdf" target="_blank" >https://iopscience.iop.org/article/10.1088/1367-2630/ab8cab/pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1367-2630/ab8cab" target="_blank" >10.1088/1367-2630/ab8cab</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Combining Floquet and Lyapunov techniques for time-dependent problems in optomechanics and electromechanics

  • Original language description

    Cavity optomechanics and electromechanics form an established field of research investigating the interactions between electromagnetic fields and the motion of quantum mechanical resonators. In many applications, linearised form of the interaction is used, which allows for the system dynamics to be fully described using a Lyapunov equation for the covariance matrix of the Wigner function. This approach, however, is problematic in situations where the Hamiltonian becomes time dependent as is the case for systems driven at multiple frequencies simultaneously. This scenario is highly relevant as it leads to dissipative preparation of mechanical states or backaction-evading measurements of mechanical motion. The time-dependent dynamics can be solved with Floquet techniques whose application is, nevertheless, not straightforward. Here, we describe a general method for combining the Lyapunov approach with Floquet techniques that enables us to transform the initial time-dependent problem into a time-independent one, at the acceptable cost of enlarging the drift and diffusion matrix. We show how the lengthy process of applying the Floquet formalism to the original equations of motion and deriving a Lyapunov equation from their time-independent form can be simplified with the use of properly defined Fourier components of the drift matrix of the original time-dependent system. We then use our formalism to comprehensively analyse dissipative generation of mechanical squeezing beyond the rotating wave approximation. Our method is applicable to various problems with multitone driving schemes in cavity optomechanics, electromechanics, and related disciplines.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10306 - Optics (including laser optics and quantum optics)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    New Journal of Physics

  • ISSN

    1367-2630

  • e-ISSN

  • Volume of the periodical

    22

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    17

  • Pages from-to

    "063019-1"-"063019-17"

  • UT code for WoS article

    000543092500001

  • EID of the result in the Scopus database

    2-s2.0-85088873737