Pruning in Map-Reduce Style CbO Algorithms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73601615" target="_blank" >RIV/61989592:15310/20:73601615 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007%2F978-3-030-57855-8_8" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-57855-8_8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-57855-8_8" target="_blank" >10.1007/978-3-030-57855-8_8</a>
Alternative languages
Result language
angličtina
Original language name
Pruning in Map-Reduce Style CbO Algorithms
Original language description
Enumeration of formal concepts is crucial in formal concept analysis. Particularly efficient for this task are algorithms from the Close-by-One family (shortly, CbO-based algorithms). State-of-the-art CbO-based algorithms, e.g. FCbO, In-Close4, and In-Close5, employ several techniques, which we call pruning, to avoid some unnecessary computations. However, the number of the formal concepts can be exponential w.r.t. dimension of the input data. Therefore, the algorithms do not scale well and large datasets become intractable. To resolve this weakness, several parallel and distributed algorithms were proposed. We propose new CbO-based algorithms intended for Apache Spark or a similar programming model and show how the pruning can be incorporated into them. We experimentally evaluate the impact of the pruning and demonstrate the scalability of the new algorithm.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Ontologies and Concepts in Mind and Machine
ISBN
978-3-030-57854-1
ISSN
0302-9743
e-ISSN
—
Number of pages
12
Pages from-to
103-116
Publisher name
Springer
Place of publication
Cham
Event location
Bolzano; Italia
Event date
Sep 18, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—