All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Adsorption based realistic molecular model of amorphous kerogen

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73601949" target="_blank" >RIV/61989592:15310/20:73601949 - isvavai.cz</a>

  • Result on the web

    <a href="https://pubs.rsc.org/en/content/articlehtml/2020/ra/d0ra04453a" target="_blank" >https://pubs.rsc.org/en/content/articlehtml/2020/ra/d0ra04453a</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1039/d0ra04453a" target="_blank" >10.1039/d0ra04453a</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Adsorption based realistic molecular model of amorphous kerogen

  • Original language description

    This paper reports the results of Grand Canonical Monte Carlo (GCMC)/molecular dynamics (MD) simulations of N(2)and CO(2)gas adsorption on three different organic geomacromolecule (kerogen) models. Molecular models of kerogen, although being continuously developed through various analytical and theoretical methods, still require further research due to the complexity and variability of the organic matter. In this joint theory and experiment study, three different kerogen models, with varying chemical compositions and structure from the Bakken, were constructed based on the acquired analytic data by Kelemenet al.in 2007:C-13 nuclear magnetic resonance (C-13-NMR), X-ray photoelectron spectroscopy (XPS), and X-ray absorption near-edge structure (XANES). N(2)and CO(2)gas adsorption isotherms obtained from GCMC/MD simulations are in very good agreement with the experimental isotherms of physical samples that had a similar geochemical composition and thermal maturity. The N-2/CO(2)uptake by the kerogen model at a range of pressure shows considerable similarity with our experimental data. The stronger interaction of CO(2)molecules with the model leads to the penetration of CO(2)molecules to the sub-surface levels in contrast to N(2)molecules being concentrated on the surface of kerogen. These results suggest the important role of kerogen in the separation and transport of gas in organic-rich shale that are the target for sequestration of CO(2)and/or enhanced oil recovery (EOR).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

  • Continuities

    N - Vyzkumna aktivita podporovana z neverejnych zdroju

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    RSC Advances

  • ISSN

    2046-2069

  • e-ISSN

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    39

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    9

  • Pages from-to

    23312-23320

  • UT code for WoS article

    000543298000045

  • EID of the result in the Scopus database

    2-s2.0-85086830033