Ivanov's Theorem for Admissible Pairs Applicable to Impulsive Differential Equations and Inclusions on Tori
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73602185" target="_blank" >RIV/61989592:15310/20:73602185 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2227-7390/8/9/1602/htm" target="_blank" >https://www.mdpi.com/2227-7390/8/9/1602/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math8091602" target="_blank" >10.3390/math8091602</a>
Alternative languages
Result language
angličtina
Original language name
Ivanov's Theorem for Admissible Pairs Applicable to Impulsive Differential Equations and Inclusions on Tori
Original language description
The main aim of this article is two-fold: (i) to generalize into a multivalued setting the classical Ivanov theorem about the lower estimate of a topological entropy in terms of the asymptotic Nielsen numbers, and (ii) to apply the related inequality for admissible pairs to impulsive differential equations and inclusions on tori. In case of a positive topological entropy, the obtained result can be regarded as a nontrivial contribution to deterministic chaos for multivalued impulsive dynamics.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics
ISSN
2227-7390
e-ISSN
—
Volume of the periodical
8
Issue of the periodical within the volume
9
Country of publishing house
CH - SWITZERLAND
Number of pages
14
Pages from-to
"1602-1"-"1602-14"
UT code for WoS article
000580758800001
EID of the result in the Scopus database
2-s2.0-85091357609