All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Liouvillian exceptional points of any order in dissipative linear bosonic systems: Coherence functions and switching between PT and anti-PT symmetries

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73602384" target="_blank" >RIV/61989592:15310/20:73602384 - isvavai.cz</a>

  • Result on the web

    <a href="https://journals.aps.org/pra/pdf/10.1103/PhysRevA.102.033715" target="_blank" >https://journals.aps.org/pra/pdf/10.1103/PhysRevA.102.033715</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevA.102.033715" target="_blank" >10.1103/PhysRevA.102.033715</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Liouvillian exceptional points of any order in dissipative linear bosonic systems: Coherence functions and switching between PT and anti-PT symmetries

  • Original language description

    Usually, when investigating exceptional points (EPs) of an open Markovian bosonic system, one deals with spectral degeneracies of a non-Hermitian Hamiltonian (NHH), which can correctly describe the system dynamics only in the semiclassical regime. A recently proposed quantum Liouvillian framework [Minganti et al., Phys. Rev. A 100, 062131 (2019)] enables the complete determination of the dynamical properties of such systems and their EPs (referred to as Liouvillian EPs, or LEPs) in the quantum regime by taking into account the effects of quantum jumps, which are ignored in the NHH formalism. Moreover, the symmetry and eigenfrequency spectrum of the NHH become a part of much larger Liouvillian eigenspace. As such, the EPs of an NHH form a subspace of the LEPs. Here we show that once an NHH of a dissipative linear bosonic system exhibits an EP of a certain finite order n, it immediately implies that the corresponding LEP can become of any higher order m &gt;= n defined in the infinite Hilbert space. These higher-order LEPs can be identified by the coherence and spectral functions at the steady state. The coherence functions can offer a convenient tool to probe extreme system sensitivity to external perturbations in the vicinity of higher-order LEPs. As an example, we study a linear bosonic system of a bimodal cavity with incoherent mode coupling to reveal its higher-order LEPs; particularly, of second and third order via first- and second-order coherence functions, respectively. Accordingly, these LEPs can be additionally revealed by squared and cubic Lorentzian spectral lineshapes in the power and intensity-fluctuation spectra. Moreover, we demonstrate that these EPs can also be associated with spontaneous parity-time (PT) and anti-PT-symmetry breaking in the system studied. These symmetries can be switched in the output fields (the so-called supermodes) of an additional linear coupler with a properly chosen coupling strength. Thus, we show that the initial loss-loss dynamics for the supermodes can be equivalent to the balanced gain-loss evolution.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10306 - Optics (including laser optics and quantum optics)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    PHYSICAL REVIEW A

  • ISSN

    2469-9926

  • e-ISSN

  • Volume of the periodical

    102

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

    "033715-1"-"033715-13"

  • UT code for WoS article

    000571474900002

  • EID of the result in the Scopus database

    2-s2.0-85092590509