All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Two-Dimensional Observables and Spectral Resolutions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73603669" target="_blank" >RIV/61989592:15310/20:73603669 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0034487720300239" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0034487720300239</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/S0034-4877(20)30023-9" target="_blank" >10.1016/S0034-4877(20)30023-9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Two-Dimensional Observables and Spectral Resolutions

  • Original language description

    A two-dimensional observable is a special kind of a sigma-homomorphism defined on the Borel sigma-algebra of the real plane with values in a sigma-complete MV-algebra or in a monotone sigma-complete effect algebra. A two-dimensional spectral resolution is a mapping defined on the real plane with values in a sigma-complete MV-algebra or in a monotone sigma-complete effect algebra which has properties similar to a two-dimensional distribution function in probability theory. We show that there is a one-to-one correspondence between two-dimensional observables and two-dimensional spectral resolutions defined on a sigma-complete MV-algebras as well as on the monotone s-complete effect algebras with the Riesz decomposition property. The result is applied to the existence of a joint two-dimensional observable of two one-dimensional observables.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10303 - Particles and field physics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    REPORTS ON MATHEMATICAL PHYSICS

  • ISSN

    0034-4877

  • e-ISSN

  • Volume of the periodical

    85

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    PL - POLAND

  • Number of pages

    29

  • Pages from-to

    163-191

  • UT code for WoS article

    000528253600001

  • EID of the result in the Scopus database

    2-s2.0-85083286780