Two-Dimensional Observables and Spectral Resolutions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73603669" target="_blank" >RIV/61989592:15310/20:73603669 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0034487720300239" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0034487720300239</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/S0034-4877(20)30023-9" target="_blank" >10.1016/S0034-4877(20)30023-9</a>
Alternative languages
Result language
angličtina
Original language name
Two-Dimensional Observables and Spectral Resolutions
Original language description
A two-dimensional observable is a special kind of a sigma-homomorphism defined on the Borel sigma-algebra of the real plane with values in a sigma-complete MV-algebra or in a monotone sigma-complete effect algebra. A two-dimensional spectral resolution is a mapping defined on the real plane with values in a sigma-complete MV-algebra or in a monotone sigma-complete effect algebra which has properties similar to a two-dimensional distribution function in probability theory. We show that there is a one-to-one correspondence between two-dimensional observables and two-dimensional spectral resolutions defined on a sigma-complete MV-algebras as well as on the monotone s-complete effect algebras with the Riesz decomposition property. The result is applied to the existence of a joint two-dimensional observable of two one-dimensional observables.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10303 - Particles and field physics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
REPORTS ON MATHEMATICAL PHYSICS
ISSN
0034-4877
e-ISSN
—
Volume of the periodical
85
Issue of the periodical within the volume
2
Country of publishing house
PL - POLAND
Number of pages
29
Pages from-to
163-191
UT code for WoS article
000528253600001
EID of the result in the Scopus database
2-s2.0-85083286780