All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Manganese-Mediated Growth of ZnS Shell on KMnF3:Yb,Er Cores toward Enhanced Up/Downconversion Luminescence

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73604140" target="_blank" >RIV/61989592:15310/20:73604140 - isvavai.cz</a>

  • Result on the web

    <a href="https://pubs.acs.org/doi/full/10.1021/acsami.9b21832" target="_blank" >https://pubs.acs.org/doi/full/10.1021/acsami.9b21832</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acsami.9b21832" target="_blank" >10.1021/acsami.9b21832</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Manganese-Mediated Growth of ZnS Shell on KMnF3:Yb,Er Cores toward Enhanced Up/Downconversion Luminescence

  • Original language description

    Epitaxially growing a semiconductor shell on the surface of upconversion nanocrystals to form a core/shell structure is believed to be a promising strategy to improve the luminescent efficiency of lanthanide ions doped in particle cores and, meanwhile, enriches the optical properties of the resulting nanocrystals. However, liquid-phase synthesis of such core/shell-structured nanocrystals comprised of a lanthanide ion-doped core and semiconductor shell remains challenging because of the chemical incompatibilities between lanthanides and the most intermediate gap semiconductors. In this context, the successful growth of ZnS shell on a KMnF3 core codoped with Yb3+/Er3+ ions is reported to enhance the upconversion luminescence of Er3+ ions. The underlying core/shell formation mechanism is elucidated in detail combining the hard-soft acid-base theory with structural analysis of the resulting nanocrystals. Quite unexpectedly, Mn2+ diffusion across the core/shell interface occurs during ZnS shell growth, giving rise to Mn2+ emission from the ZnS shell. Thus, the resulting core/shell particles exhibited unique up/downconversion luminescence from doped lanthanide metal ions and transition-metal ions, respectively. By manipulating the ion diffusion and shell growth kinetics, the upconversion and downconversion luminescent performance of KMnF3:Yb,Er@ZnS nanocrystals are further optimized and the related mechanisms are discussed. Further, temperature-dependent upconversion and downconversion photoluminescence properties of KMnF3:Yb,Er@ZnS nanocrystals show potential for ratiometric luminescence temperature sensing.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ACS Applied Materials &amp; Interfaces

  • ISSN

    1944-8244

  • e-ISSN

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    11

  • Pages from-to

    11934-11944

  • UT code for WoS article

    000526609100064

  • EID of the result in the Scopus database

    2-s2.0-85081945048