All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Spectral Distribution of Ultra-Weak Photon Emission as a Response toWounding in Plants: An In Vivo Study

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73604912" target="_blank" >RIV/61989592:15310/20:73604912 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.mdpi.com/2079-7737/9/6/139/htm" target="_blank" >http://www.mdpi.com/2079-7737/9/6/139/htm</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/biology9060139" target="_blank" >10.3390/biology9060139</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Spectral Distribution of Ultra-Weak Photon Emission as a Response toWounding in Plants: An In Vivo Study

  • Original language description

    It is well established that every living organism spontaneously emits photons referred to as ultra-weak photon emission (synonym biophotons or low-level chemiluminescence) which inherently embodies information about the wellbeing of the source. In recent years, reports have been made to use this feature as a non-invasive diagnostic tool related to the detection of food quality, agriculture and biomedicine. The current study deals with stress resulting from wounding (mechanical injury) on Arabidopsis thaliana and how it modifies the spontaneous ultra-weak photon emission. The ultra-weak photon emission from control (non-wounded) and stressed (wounded) plants was monitored using dierent modes of ultra-weak photon emission measurement sensors like charge-coupled device (CCD) cameras and photomultiplier tubes (PMT) and the collected data were analyzed to determine the level of stress generated, photon emission patterns, and underlying biochemical process. It is generally considered that electronically excited species formed during the oxidative metabolic processes are responsible for the ultra-weak photon emission. In the current study, a high-performance cryogenic full-frame CCD camera was employed for two-dimensional in-vivo imaging of ultra-weak photon emission (up to several counts/s) and the spectral analysis was done by using spectral system connected to a PMT. The results show that Arabidopsis subjected to mechanical injury enhances the photon emission and also leads to changes in the spectral pattern of ultra-weak photon emission. Thus, ultra-weak photon emission can be used as a tool for oxidative stress imaging and can pave its way into numerous plant application research.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10610 - Biophysics

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000827" target="_blank" >EF16_019/0000827: Plants as a tool for sustainable global development</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Biology

  • ISSN

    2079-7737

  • e-ISSN

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    14

  • Pages from-to

    "139-1"-"139-14"

  • UT code for WoS article

    000551189400030

  • EID of the result in the Scopus database

    2-s2.0-85090690890