Interplay between antioxidants in response to photooxidative stress in Arabidopsis
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73604930" target="_blank" >RIV/61989592:15310/20:73604930 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S089158492031234X" target="_blank" >http://www.sciencedirect.com/science/article/pii/S089158492031234X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.freeradbiomed.2020.08.027" target="_blank" >10.1016/j.freeradbiomed.2020.08.027</a>
Alternative languages
Result language
angličtina
Original language name
Interplay between antioxidants in response to photooxidative stress in Arabidopsis
Original language description
Tocochromanols (tocopherols and plastochromanol-8), isoprenoid quinone (plastoquinone-9 and plastoquinol-9) and carotenoids (xanthophylls), are lipid-soluble antioxidants in the chloroplasts, which play an important defensive role against photooxidative stress in plants. In this study, the interplay between the antioxidant activities of those compounds in excess light stress was analysed in wild-type (WT) Arabidopsis thaliana and in a tocopherol cyclase mutant (vte1), a homogentisate phytyl transferase mutant (vte2) and a tocopherol cyclase overexpressor (VTE1oex). The results reveal a strategy of cooperation and replacement between α-tocopherol, plastochromanol-8, plastoquinone-9 and zeaxanthin. In the first line of defence (non-radical mechanism), singlet oxygen is either physically or chemically quenched by α-tocopherol; however, when α-tocopherol is absent or consumed, zeaxanthin and plastoquinone-9/plastoquinol-9 can provide an alternative protection against singlet oxygen toxicity either by functional replacement of α-tocopherol by zeaxanthin for the physical quenching or by functional replacement of α-tocopherol by plastoquinone-9 for the chemical quenching. When singlet oxygen escapes this first line of defence, it oxidizes lipids and forms lipid hydroperoxides, which are oxidized to lipid peroxyl radicals by ferric iron. In the second line of defence (radical mechanism), lipid peroxyl radicals are scavenged by α-tocopherol. After its consumption, plastochromanol-8 overtakes this function. We provide a comprehensive description of the reaction pathways underlying the non-radical and radical antioxidant activities of α-tocopherol, carotenoids, plastoquinone-9/plastoquinol-9 and plastochromanol-8. The interplay between the different plastid lipid-soluble antioxidants in the non-radical and the radical mechanism provides step by step insights into protection against photooxidative stress in higher plants.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10610 - Biophysics
Result continuities
Project
<a href="/en/project/EF16_019%2F0000827" target="_blank" >EF16_019/0000827: Plants as a tool for sustainable global development</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
FREE RADICAL BIOLOGY AND MEDICINE
ISSN
0891-5849
e-ISSN
—
Volume of the periodical
160
Issue of the periodical within the volume
NOV
Country of publishing house
US - UNITED STATES
Number of pages
14
Pages from-to
894-907
UT code for WoS article
000595084100004
EID of the result in the Scopus database
2-s2.0-85094211129