What are pseudo EMV-algebras?
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73605556" target="_blank" >RIV/61989592:15310/20:73605556 - isvavai.cz</a>
Result on the web
<a href="http://jahla.hatef.ac.ir/article_101791_74a5d2f083a7f91add371068e0a2bad5.pdf" target="_blank" >http://jahla.hatef.ac.ir/article_101791_74a5d2f083a7f91add371068e0a2bad5.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.29252/hatef.jahla.1.1.1" target="_blank" >10.29252/hatef.jahla.1.1.1</a>
Alternative languages
Result language
angličtina
Original language name
What are pseudo EMV-algebras?
Original language description
In the paper, we present EMV-algebras as a common generalization of MV-algebras and generalized Boolean algebras where a top element is not assumed a priori. In addition, we present a non-commutative generalization of EMV-algebras, pseudo MV-algebras and of generalized Boolean algebras. We present main representation results showing a very close connection of pseudo EMV algebra with pseudo MV-algebras, and we give a categorical representation of the category o pseudo EMValgebras without top element. We study also states as analogs of finitely additive tates, their topological properties, and we present an integral representation of states by sigma-additive probability measures.
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Algebraic Hyperstructures and Logical Algebras
ISSN
2676-6000
e-ISSN
—
Volume of the periodical
1
Issue of the periodical within the volume
1
Country of publishing house
IR - IRAN, ISLAMIC REPUBLIC OF
Number of pages
20
Pages from-to
1-20
UT code for WoS article
—
EID of the result in the Scopus database
—