All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Measurement-free preparation of grid states

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73606500" target="_blank" >RIV/61989592:15310/21:73606500 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.nature.com/articles/s41534-020-00353-3.pdf" target="_blank" >https://www.nature.com/articles/s41534-020-00353-3.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41534-020-00353-3" target="_blank" >10.1038/s41534-020-00353-3</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Measurement-free preparation of grid states

  • Original language description

    Quantum computing potentially offers exponential speed-ups over classical computing for certain tasks. A central, outstanding challenge to making quantum computing practical is to achieve fault tolerance, meaning that computations of any length or size can be realized in the presence of noise. The Gottesman-Kitaev-Preskill code is a promising approach toward fault-tolerant quantum computing, encoding logical qubits into grid states of harmonic oscillators. However, for the code to be fault tolerant, the quality of the grid states has to be extremely high. Approximate grid states have recently been realized experimentally, but their quality is still insufficient for fault tolerance. Current implementable protocols for generating grid states rely on measurements of ancillary qubits combined with either postselection or feed forward. Implementing such measurements take up significant time during which the states decohere, thus limiting their quality. Here, we propose a measurement-free preparation protocol, which deterministically prepares arbitrary logical grid states with a rectangular or hexagonal lattice. The protocol can be readily implemented in trapped-ion or superconducting-circuit platforms to generate high-quality grid states using only a few interactions, even with the noise levels found in current systems.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10306 - Optics (including laser optics and quantum optics)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    npj Quantum Information

  • ISSN

    2056-6387

  • e-ISSN

  • Volume of the periodical

    7

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    8

  • Pages from-to

    "17-1"-"17-8"

  • UT code for WoS article

    000616402200004

  • EID of the result in the Scopus database

    2-s2.0-85100082855