Conformally Fedosov manifolds and geodesic mappings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73607703" target="_blank" >RIV/61989592:15310/21:73607703 - isvavai.cz</a>
Result on the web
<a href="https://aip.scitation.org/doi/pdf/10.1063/5.0046223" target="_blank" >https://aip.scitation.org/doi/pdf/10.1063/5.0046223</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0046223" target="_blank" >10.1063/5.0046223</a>
Alternative languages
Result language
angličtina
Original language name
Conformally Fedosov manifolds and geodesic mappings
Original language description
We introduce the notion of a conformally Fedosov structure and geodesic mappings of manifolds with affine connection. It is proved that in the case of geodesic mapping of manifolds with affine connection and when skew-symmetric part of the Ricci tensor is preserved then conformally Fedosov structure is also preserved.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
AIP Conference Proceedings
ISBN
—
ISSN
0094-243X
e-ISSN
1551-7616
Number of pages
4
Pages from-to
"020014-1"-"020014-4"
Publisher name
American Institute of Physics
Place of publication
New York
Event location
Istanbul
Event date
Jun 17, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000664201400077