Extremals and isoperimetric extremals of the rotations in the plane
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73607706" target="_blank" >RIV/61989592:15310/21:73607706 - isvavai.cz</a>
Result on the web
<a href="https://obd.upol.cz/id_publ/333187592" target="_blank" >https://obd.upol.cz/id_publ/333187592</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7546/giq-22-2021-136-141" target="_blank" >10.7546/giq-22-2021-136-141</a>
Alternative languages
Result language
angličtina
Original language name
Extremals and isoperimetric extremals of the rotations in the plane
Original language description
In the paper we study the extremals and isoperimetric extremals of the rotations in the plane. We found that extremals of the rotations in the plane are arbitrary curves. By studying the Euler-Poisson equations for extended variational problems, we found that the isoperimetric extremals of the rotations in the Euclidian plane are straight lines.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Geometry, Integrability and Quantization
ISSN
1314-3247
e-ISSN
—
Volume of the periodical
22
Issue of the periodical within the volume
SI
Country of publishing house
US - UNITED STATES
Number of pages
6
Pages from-to
136-141
UT code for WoS article
000696773000009
EID of the result in the Scopus database
2-s2.0-85108528304