Sheffer operations in complemented posets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73609259" target="_blank" >RIV/61989592:15310/21:73609259 - isvavai.cz</a>
Result on the web
<a href="http://ma.fme.vutbr.cz/archiv/10_1/ma_10_1_chajda_kolarik_final.pdf" target="_blank" >http://ma.fme.vutbr.cz/archiv/10_1/ma_10_1_chajda_kolarik_final.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.13164/ma.2021.01" target="_blank" >10.13164/ma.2021.01</a>
Alternative languages
Result language
angličtina
Original language name
Sheffer operations in complemented posets
Original language description
We show that in every downward directed poset with an antitone involution can be introduced the so-called Sheffer operation satisfying certain identities. However, also conversely, if we have given a Sheffer operation | on a set P then P can be converted into a poset with an antitone involution ' where both ' and the order relation are derived by |. Using this, we can characterize orthoposets, i.e. bounded posets with complementation which is an antitone involution by means of identities satisfying by this Sheffer operation. Also conversely, if | is a Sheffer operation on a given set P satisfying these identities then P can be organized into an orthoposet.
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GF20-09869L" target="_blank" >GF20-09869L: The many facets of orthomodularity</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics for Applications
ISSN
1805-3610
e-ISSN
—
Volume of the periodical
10
Issue of the periodical within the volume
1
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
7
Pages from-to
1-7
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85112797612