All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Geographically Weighted Regression Analysis for Two-Factorial Compositional Data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73609682" target="_blank" >RIV/61989592:15310/21:73609682 - isvavai.cz</a>

  • Result on the web

    <a href="https://obd.upol.cz/id_publ/333189568" target="_blank" >https://obd.upol.cz/id_publ/333189568</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-71175-7_6" target="_blank" >10.1007/978-3-030-71175-7_6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Geographically Weighted Regression Analysis for Two-Factorial Compositional Data

  • Original language description

    The chapter focuses on the modelling and analysis of spatial dependent two-factorial compositional data. Spatial statistics provides a wide range of methods for the analysis of data with local variations but only a few of them are accommodated for the purposes of modelling relative structures. In this chapter, the geographically weighted regression model is introduced to analyse the relationship between the dependent variable and an explanatory variable reflecting a structure expressed in terms of a compositional table. The methodology is motivated by the problem of modelling local variations of the relationship between at-risk-of-poverty rates and the structure of the highest attained educational level in the German population aged 30–34. The real data study shows how information included in a compositional table and further expressed in real-valued coordinates can be highly valuable in selecting variables and prioritising them with respect to a research interest to facilitate the final interpretation of the model.

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/GA18-05432S" target="_blank" >GA18-05432S: Spatial synthesis based on advanced geocomputation methods</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Advances in Compositional Data Analysis, Festschrift in Honour of Vera Pawlowsky-Glahn

  • ISBN

    978-3-030-71174-0

  • Number of pages of the result

    22

  • Pages from-to

    103-124

  • Number of pages of the book

    404

  • Publisher name

    Springer

  • Place of publication

    Cham

  • UT code for WoS chapter