All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Independent Component Analysis for Compositional Data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73609685" target="_blank" >RIV/61989592:15310/21:73609685 - isvavai.cz</a>

  • Result on the web

    <a href="https://obd.upol.cz/id_publ/333189571" target="_blank" >https://obd.upol.cz/id_publ/333189571</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-73249-3_27" target="_blank" >10.1007/978-3-030-73249-3_27</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Independent Component Analysis for Compositional Data

  • Original language description

    Compositional data represent a specific family of multivariate data, where the information of interest is contained in the ratios between parts rather than in absolute values of single parts. The analysis of such specific data is challenging as the application of standard multivariate analysis tools on the raw observations can lead to spurious results. Hence, it is appropriate to apply certain transformations prior to further analysis. One popular multivariate data analysis tool is independent component analysis. Independent component analysis aims to find statistically independent components in the data and as such might be seen as an extension to principal component analysis. In this paper, we examine an approach of how to apply independent component analysis on compositional data by respecting the nature of the latter and demonstrate the usefulness of this procedure on a metabolomics dataset.

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Advances in Contemporary Statistics and Econometrics, Festschrift in Honor of Christine Thomas-Agnan

  • ISBN

    978-3-030-73248-6

  • Number of pages of the result

    21

  • Pages from-to

    525-545

  • Number of pages of the book

    710

  • Publisher name

    Springer

  • Place of publication

    Cham

  • UT code for WoS chapter