Weak pseudo EMV-algebrasALGEBRAS. I: Basic properties
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73609902" target="_blank" >RIV/61989592:15310/21:73609902 - isvavai.cz</a>
Result on the web
<a href="https://obd.upol.cz/id_publ/333189789" target="_blank" >https://obd.upol.cz/id_publ/333189789</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Weak pseudo EMV-algebrasALGEBRAS. I: Basic properties
Original language description
Part I. We define weak pseudo EMV-algebras which are a non-commutative generalization of weak EMV-algebras, pseudo MV-algebras, and generalized Boolean algebras, respectively. In contrast to pseudo EMV-algebras, the class of wPEMV-algebras is a variety. We present basic properties and examples of wPEMV-algebras. The main aim is to show when a wPEMV-algebra can be embedded into a wPEMV-algebra N with top element, called a representing wPEMV-algebra, as a maximal and normal ideal of N. The paper is divided into two parts. Part I studies wPEMV-algebras from the point of semiclans, generalized pseudo effect algebras and integral GMV-algebras. We describe congruences via normal ideals, and we show when a wPEMV-algebra possesses a representing one.
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
10700 - Other natural sciences
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Applied Logics-IfCoLoG Journal of Logics and their Applications
ISSN
2055-3706
e-ISSN
—
Volume of the periodical
8
Issue of the periodical within the volume
10
Country of publishing house
GB - UNITED KINGDOM
Number of pages
35
Pages from-to
2365-2399
UT code for WoS article
000726709800001
EID of the result in the Scopus database
—