All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Logratio Approach to Distributional Modeling

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73610058" target="_blank" >RIV/61989592:15310/21:73610058 - isvavai.cz</a>

  • Result on the web

    <a href="https://obd.upol.cz/id_publ/333189945" target="_blank" >https://obd.upol.cz/id_publ/333189945</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-73249-3_23" target="_blank" >10.1007/978-3-030-73249-3_23</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Logratio Approach to Distributional Modeling

  • Original language description

    Distributional data, such as age distributions of populations, can be treated as continuous or discrete data, but the main interest is in the relative information, e.g., in terms of ratios (or logratios) between the different age classes. Here we present a unifying framework for the discrete and the continuous case based on the theory of Bayes spaces. While the discrete case is more widely treated in the literature, the continuous case allows to make a link to functional data analysis. Moreover, the methodological framework of Bayes spaces can also be used to develop methods for analyzing several distributional variables simultaneously. It turns out that the centered logratio transformation is a convenient tool for practical computations. Two real data examples illustrate the usefulness of this framework.

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/GA19-01768S" target="_blank" >GA19-01768S: Separation of geochemical signals in sediments: application of advanced statistical methods on large geochemical datasets</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Advances in Contemporary Statistics and Econometrics

  • ISBN

    978-3-030-73248-6

  • Number of pages of the result

    20

  • Pages from-to

    451-470

  • Number of pages of the book

    710

  • Publisher name

    Springer

  • Place of publication

    Cham

  • UT code for WoS chapter