The logic of orthomodular posets of finite height
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73612572" target="_blank" >RIV/61989592:15310/22:73612572 - isvavai.cz</a>
Result on the web
<a href="https://academic.oup.com/jigpal/article/30/1/143/6042034" target="_blank" >https://academic.oup.com/jigpal/article/30/1/143/6042034</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/jigpal/jzaa067" target="_blank" >10.1093/jigpal/jzaa067</a>
Alternative languages
Result language
angličtina
Original language name
The logic of orthomodular posets of finite height
Original language description
Orthomodular posets form an algebraic formalization of the logic of quantum mechanics. A central question is how to introduce implication in such a logic. We give a positive answer whenever the orthomodular poset in question if of finite height. The crutial advantage of our solution is that the corresponding algebra, called implication orthomodular poset, i.e. a poset equipped with a binary operator implication, corresponds to the original orthomodular poset. This enable us to derive an axiomatization in Gentzen style for the algebraizable logic of orthomodular posets of finite heigh.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF20-09869L" target="_blank" >GF20-09869L: The many facets of orthomodularity</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
LOGIC JOURNAL OF THE IGPL
ISSN
1367-0751
e-ISSN
1368-9894
Volume of the periodical
30
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
12
Pages from-to
143-154
UT code for WoS article
000744508900008
EID of the result in the Scopus database
2-s2.0-85129552054