All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Semimodules over commutative semirings and modules over unitary commutative rings

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73612774" target="_blank" >RIV/61989592:15310/22:73612774 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.tandfonline.com/doi/epdf/10.1080/03081087.2020.1760192" target="_blank" >https://www.tandfonline.com/doi/epdf/10.1080/03081087.2020.1760192</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/03081087.2020.1760192" target="_blank" >10.1080/03081087.2020.1760192</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Semimodules over commutative semirings and modules over unitary commutative rings

  • Original language description

    It is known that the lattice of submodules of a module is modular. However, this is not the case for the lattice of subsemimodules of a semimodule. We show examples and describe these lattices for a given semimodule. We study closed and splitting subsemimodules and submodules of a given semimodule or module M, respectively. We derive a sufficient condition under which the lattice Lc(M) of closed subsemimodules is a homomorphic image of the lattice L(M) of all subsemimodules. We describe the ordered set of splitting submodules of a module and show a natural bijective correspondence between this poset and the poset of all projections of this module. We show that this poset is orthomodular. This result extendes the case known for posets of closed subspaces of a Hilbert space which is used in the logic of quantum mechanics.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GF20-09869L" target="_blank" >GF20-09869L: The many facets of orthomodularity</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    LINEAR &amp; MULTILINEAR ALGEBRA

  • ISSN

    0308-1087

  • e-ISSN

    1563-5139

  • Volume of the periodical

    70

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    16

  • Pages from-to

    1329-1344

  • UT code for WoS article

    000538280100001

  • EID of the result in the Scopus database

    2-s2.0-85085314452