Canonical F-planar mappings of spaces with affine connection to two symmetric spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73613445" target="_blank" >RIV/61989592:15310/22:73613445 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1134/S1995080222060063" target="_blank" >https://link.springer.com/article/10.1134/S1995080222060063</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1134/S1995080222060063" target="_blank" >10.1134/S1995080222060063</a>
Alternative languages
Result language
angličtina
Original language name
Canonical F-planar mappings of spaces with affine connection to two symmetric spaces
Original language description
In this paper, we consider canonical F-planar mappings of spaces with affine connection on two symmetric spaces. The basic equations of such mappings are obtained in the form of a closed system of Cauchy-type equations in covariant derivatives. The number of essential parameters on which its solution depends has been established.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Lobachevskii Journal of Mathematics
ISSN
1995-0802
e-ISSN
1818-9962
Volume of the periodical
43
Issue of the periodical within the volume
3
Country of publishing house
RU - RUSSIAN FEDERATION
Number of pages
6
Pages from-to
533-538
UT code for WoS article
000826052000003
EID of the result in the Scopus database
2-s2.0-85134294767