Stroboscopic thermally-driven mechanical motion
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73614745" target="_blank" >RIV/61989592:15310/22:73614745 - isvavai.cz</a>
Result on the web
<a href="https://www.nature.com/articles/s41598-022-24074-z.pdf" target="_blank" >https://www.nature.com/articles/s41598-022-24074-z.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-022-24074-z" target="_blank" >10.1038/s41598-022-24074-z</a>
Alternative languages
Result language
angličtina
Original language name
Stroboscopic thermally-driven mechanical motion
Original language description
Unstable nonlinear systems can produce a large displacement driven by a small thermal initial noise. Such inherently nonlinear phenomena are stimulating in stochastic physics, thermodynamics, and in the future even in quantum physics. In one-dimensional mechanical instabilities, recently made available in optical levitation, the rapidly increasing noise accompanying the unstable motion reduces a displacement signal already in its detection. It limits the signal-to-noise ratio for upcoming experiments, thus constraining the observation of such essential nonlinear phenomena and their further exploitation. An extension to a two-dimensional unstable dynamics helps to separate the desired displacement from the noisy nonlinear driver to two independent variables. It overcomes the limitation upon observability, thus enabling further exploitation. However, the nonlinear driver remains unstable and rapidly gets noisy. It calls for a challenging high-order potential to confine the driver dynamics and rectify the noise. Instead, we propose and analyse a feasible stroboscopically-cooled driver that provides the desired detectable motion with sufficiently high signal-to-noise ratio. Fast and deep cooling, together with a rapid change of the driver stiffness, are required to reach it. However, they have recently become available in levitating optomechanics. Therefore, our analysis finally opens the road to experimental investigation of thermally-driven motion in nonlinear systems, its thermodynamical analysis, and future quantum extensions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10306 - Optics (including laser optics and quantum optics)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Scientific Reports
ISSN
2045-2322
e-ISSN
2045-2322
Volume of the periodical
12
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
14
Pages from-to
"20091-1"-"20091-14"
UT code for WoS article
000887936600027
EID of the result in the Scopus database
2-s2.0-85142508876