Phase Changes in the Surface Layer of Stainless Steel Annealed at a Temperature of 550 °C
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73615987" target="_blank" >RIV/61989592:15310/22:73615987 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/1996-1944/15/24/8871" target="_blank" >https://www.mdpi.com/1996-1944/15/24/8871</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/ma15248871" target="_blank" >10.3390/ma15248871</a>
Alternative languages
Result language
angličtina
Original language name
Phase Changes in the Surface Layer of Stainless Steel Annealed at a Temperature of 550 °C
Original language description
Stainless steels have the advantage of forming a protective surface layer to prevent corrosion. This layer results from phase and structural changes on the steel surface. Stainless steel samples (1.4404, 316L), whose alloying elements include Cr, Ni, Mo, and Mn, were subjected to the study of the surface layer. Prism-shaped samples (25 × 25 × 3) mm3 were made from CL20ES stainless steel powder, using selective laser melting. After sandblasting with corundum powder and annealing at 550 °C for different periods of time (2, 4, 8, 16, 32, 64, 128 h), samples were studied by conversion X-ray Mössbauer spectroscopy (CXMS), conversion electron Mössbauer spectroscopy (CEMS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The main topics of the research were surface morphology and elemental and phase composition. The annealing of stainless steel samples resulted in a new surface layer comprising leaf-shaped crystals made of chromium oxide. The crystals grew, and their number increased as annealing time was extended. The amount of chromium increased in the surface layer at the expense of iron and nickel, and the longer the annealing time was set, the more chromium was observed in the surface layer. Iron compounds (BCC iron, mixed Fe–Cr oxide) were found in the surface layer, in addition to chromium oxide. BCC iron appeared only after annealing for at least 4 h, which is the initial time of austenitic–ferritic transformation. Mixed Fe–Cr oxide was observed in all annealed samples. All phase changes were observed in the surface layer at approximately 0.6 µm depth.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20501 - Materials engineering
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Materials
ISSN
1996-1944
e-ISSN
—
Volume of the periodical
15
Issue of the periodical within the volume
24
Country of publishing house
CH - SWITZERLAND
Number of pages
14
Pages from-to
"8871-1"-"8871-14"
UT code for WoS article
000904196400001
EID of the result in the Scopus database
2-s2.0-85144827171