Quantum Liouvillian exceptional and diabolical points for bosonic fields with quadratic Hamiltonians: The Heisenberg-Langevin equation approach
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73616374" target="_blank" >RIV/61989592:15310/22:73616374 - isvavai.cz</a>
Result on the web
<a href="https://quantum-journal.org/papers/q-2022-12-22-883/pdf/" target="_blank" >https://quantum-journal.org/papers/q-2022-12-22-883/pdf/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.22331/q-2022-12-22-883" target="_blank" >10.22331/q-2022-12-22-883</a>
Alternative languages
Result language
angličtina
Original language name
Quantum Liouvillian exceptional and diabolical points for bosonic fields with quadratic Hamiltonians: The Heisenberg-Langevin equation approach
Original language description
Equivalent approaches to determine eigenfrequencies of the Liouvillians of open quantum systems are discussed using the solution of the Heisenberg-Langevin equations and the corresponding equations for operator moments. A simple damped two-level atom is analyzed to demonstrate the equivalence of both approaches. The suggested method is used to reveal the structure as well as eigenfrequencies of the dynamics matrices of the corresponding equations of motion and their degeneracies for interacting bosonic modes described by general quadratic Hamiltonians. Quantum Liouvillian exceptional and diabolical points and their degeneracies are explicitly discussed for the case of two modes. Quantum hybrid diabolical exceptional points (inherited, genuine, and induced) and hidden exceptional points, which are not recognized directly in amplitude spectra, are observed. The presented approach via the Heisenberg-Langevin equations paves the general way to a detailed analysis of quantum exceptional and diabolical points in infinitely dimensional open quantum systems.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10306 - Optics (including laser optics and quantum optics)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Quantum
ISSN
2521-327X
e-ISSN
2521-327X
Volume of the periodical
6
Issue of the periodical within the volume
DEC
Country of publishing house
AT - AUSTRIA
Number of pages
25
Pages from-to
"883-1"-"883-25"
UT code for WoS article
000922733100001
EID of the result in the Scopus database
2-s2.0-85151402425