All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The Phytotoxin Myrigalone A Triggers a Phased Detoxification Programme and Inhibits Lepidium sativum Seed Germination via Multiple Mechanisms Including Interference with Auxin Homeostasis

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73616710" target="_blank" >RIV/61989592:15310/22:73616710 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/1422-0067/23/9/4618" target="_blank" >https://www.mdpi.com/1422-0067/23/9/4618</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/ijms23094618" target="_blank" >10.3390/ijms23094618</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The Phytotoxin Myrigalone A Triggers a Phased Detoxification Programme and Inhibits Lepidium sativum Seed Germination via Multiple Mechanisms Including Interference with Auxin Homeostasis

  • Original language description

    Molecular responses of plants to natural phytotoxins comprise more general and com-pound-specific mechanisms. How phytotoxic chalcones and other flavonoids inhibit seedling growth was widely studied, but how they interfere with seed germination is largely unknown. The dihydrochalcone and putative allelochemical myrigalone A (MyA) inhibits seed germination and seedling growth. Transcriptome (RNAseq) and hormone analyses of Lepidium sativum seed responses to MyA were compared to other bioactive and inactive compounds. MyA treatment of im-bibed seeds triggered the phased induction of a detoxification programme, altered gibberellin, cis- (+)-12-oxophytodienoic acid and jasmonate metabolism, and affected the expression of hormone transporter genes. The MyA-mediated inhibition involved interference with the antioxidant system, oxidative signalling, aquaporins and water uptake, but not uncoupling of oxidative phosphoryla-tion or p-hydroxyphenylpyruvate dioxygenase expression/activity. MyA specifically affected the expression of auxin-related signalling genes, and various transporter genes, including for auxin transport (PIN7, ABCG37, ABCG4, WAT1). Responses to auxin-specific inhibitors further supported the conclusion that MyA interferes with auxin homeostasis during seed germination. Comparative analysis of MyA and other phytotoxins revealed differences in the specific regulatory mechanisms and auxin transporter genes targeted to interfere with auxin homestasis. We conclude that MyA exerts its phytotoxic activity by multiple auxin-dependent and independent molecular mechanisms.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10611 - Plant sciences, botany

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000827" target="_blank" >EF16_019/0000827: Plants as a tool for sustainable global development</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal of Molecular Sciences

  • ISSN

    1661-6596

  • e-ISSN

  • Volume of the periodical

    23

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    35

  • Pages from-to

    "4618-1"-"4618-35"

  • UT code for WoS article

    000800719300001

  • EID of the result in the Scopus database

    2-s2.0-85128598104