Classification of Continuous Distributional Data Using the Logratio Approach
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73617310" target="_blank" >RIV/61989592:15310/22:73617310 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1201/9781315370545-9" target="_blank" >http://dx.doi.org/10.1201/9781315370545-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1201/9781315370545-9" target="_blank" >10.1201/9781315370545-9</a>
Alternative languages
Result language
angličtina
Original language name
Classification of Continuous Distributional Data Using the Logratio Approach
Original language description
One of the fundamental tasks in statistics is to classify observations into one of predefined classes, whether the observations are of multivariate or functional character. When considering distributional data, suitable classification methods honouring the data specificities are yet to be developed. In this work, a classification method for distributional data represented as probability density functions (PDFs) is proposed. The method uses the centred log-ratio (clr) transformation to adapt functional linear discriminant analysis to the distributional setting. Within the proposed setting, each functional observation is projected into a reduced discriminant space, and the classification itself is then based on minimizing the distance between the linear projections of the class representatives and those of the functional observations. The introduced method is demonstrated on geological data consisting of particle size distribution of 250 soil samples from four measuring sites in Moravia region, Czech Republic.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/GA19-01768S" target="_blank" >GA19-01768S: Separation of geochemical signals in sediments: application of advanced statistical methods on large geochemical datasets</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Analysis of Distributional Data
ISBN
978-1-4987-2545-3
Number of pages of the result
20
Pages from-to
183-202
Number of pages of the book
376
Publisher name
Chapman & Hall
Place of publication
London
UT code for WoS chapter
—