Novel 1,3,5-triazinyl aminobenzenesulfonamides incorporating aminoalcohol, aminochalcone and aminostilbene structural motifs as potent anti-vre agents, and carbonic anhydrases i, ii, vii, ix, and xii inhibitors
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73622873" target="_blank" >RIV/61989592:15310/22:73622873 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2076-3417/12/1/300" target="_blank" >https://www.mdpi.com/2076-3417/12/1/300</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/ijms23010231" target="_blank" >10.3390/ijms23010231</a>
Alternative languages
Result language
angličtina
Original language name
Novel 1,3,5-triazinyl aminobenzenesulfonamides incorporating aminoalcohol, aminochalcone and aminostilbene structural motifs as potent anti-vre agents, and carbonic anhydrases i, ii, vii, ix, and xii inhibitors
Original language description
A series of 1,3,5-triazinyl aminobenzenesulfonamides substituted by aminoalcohol, ami-nostilbene, and aminochalcone structural motifs was synthesized as potential human carbonic an-hydrase (hCA) inhibitors. The compounds were evaluated on their inhibition of tumor-associated hCA IX and hCA XII, hCA VII isoenzyme present in the brain, and physiologically important hCA I and hCA II. While the test compounds had only a negligible effect on physiologically important isoenzymes, many of the studied compounds significantly affected the hCA IX isoenzyme. Several compounds showed activity against hCA XII; (E)-4-{2-[(4-[(2,3-dihydroxypropyl)amino]-6-[(4-styrylphenyl)amino]-1,3,5-triazin-2-yl)amino]ethyl}benzenesulfonamide (31) and (E)-4-{2-[(4-[(4-hydroxyphenyl)amino]-6-[(4-styrylphenyl)amino]-1,3,5-triazin-2-yl)amino]ethyl}benzenesulfona-mide (32) were the most effective inhibitors with KIs = 4.4 and 5.9 nM, respectively. In addition, the compounds were tested against vancomycin-resistant Enterococcus faecalis (VRE) isolates. (E)-4-[2-({4-[(4-cinnamoylphenyl)amino]-6-[(4-hydroxyphenyl)amino]-1,3,5-triazin-2-yl}amino)ethyl]ben-zenesulfonamide (21) (MIC = 26.33 µM) and derivative 32 (MIC range 13.80–55.20 µM) demonstrated the highest activity against all tested strains. The most active compounds were evaluated for their cytotoxicity against the Human Colorectal Tumor Cell Line (HCT116 p53 +/+). Only 4,4’-[(6-chloro-1,3,5-triazin-2,4-diyl)bis(iminomethylene)]dibenzenesulfonamide (7) and compound 32 demonstrated an IC50 of ca. 6.5 µM; otherwise, the other selected derivatives did not show toxicity at concentrations up to 50 µM. The molecular modeling and docking of active compounds into var-ious hCA isoenzymes, including bacterial carbonic anhydrase, specifically α-CA present in VRE, was performed to try to outline a possible mechanism of selective anti-VRE activity.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10608 - Biochemistry and molecular biology
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Molecular Sciences
ISSN
1661-6596
e-ISSN
—
Volume of the periodical
23
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
45
Pages from-to
"231-1"-"231-45"
UT code for WoS article
000751345900001
EID of the result in the Scopus database
2-s2.0-85121700745