All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Note on the Geometry of Certain Classes of Lichnerowicz Laplacians and Their Applications

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F23%3A73620738" target="_blank" >RIV/61989592:15310/23:73620738 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2227-7390/11/21/4434" target="_blank" >https://www.mdpi.com/2227-7390/11/21/4434</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math11214434" target="_blank" >10.3390/math11214434</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Note on the Geometry of Certain Classes of Lichnerowicz Laplacians and Their Applications

  • Original language description

    n the present paper, we prove vanishing theorems for the null space of the Lichnerowicz Laplacian acting on symmetric two tensors on complete and closed Riemannian manifolds and further estimate its lowest eigenvalue on closed Riemannian manifolds. In addition, we give an application of the obtained results to the theory of infinitesimal Einstein deformations.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

    2227-7390

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    21

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    10

  • Pages from-to

    "4434-1"-"4434-10"

  • UT code for WoS article

    001100280400001

  • EID of the result in the Scopus database

    2-s2.0-85176558837