All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The Semilinear Home-Space Problem Is Ackermann-Complete for Petri Nets

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F23%3A73620756" target="_blank" >RIV/61989592:15310/23:73620756 - isvavai.cz</a>

  • Result on the web

    <a href="https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2023.36" target="_blank" >https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2023.36</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.CONCUR.2023.36" target="_blank" >10.4230/LIPIcs.CONCUR.2023.36</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The Semilinear Home-Space Problem Is Ackermann-Complete for Petri Nets

  • Original language description

    A set of configurations H is a home-space for a set of configurations X of a Petri net if every configuration reachable from (any configuration in) X can reach (some configuration in) H. The semilinear home-space problem for Petri nets asks, given a Petri net and semilinear sets of configurations X, H, if H is a home-space for X. In 1989, David de Frutos Escrig and Colette Johnen proved that the problem is decidable when X is a singleton and H is a finite union of linear sets with the same periods. In this paper, we show that the general (semilinear) problem is decidable. This result is obtained by proving a duality between the reachability problem and the non-home-space problem. In particular, we prove that for any Petri net and any linear set of configurations L we can effectively compute a semilinear set C of configurations, called a non-reachability core for L, such that for every set X the set L is not a home-space for X if, and only if, C is reachable from X. We show that the established relation to the reachability problem yields the Ackermann-completeness of the (semilinear) home-space problem. For this we also show that, given a Petri net with an initial marking, the set of minimal reachable markings can be constructed in Ackermannian time.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Leibniz International Proceedings in Informatics (LIPIcs)

  • ISBN

    978-3-95977-299-0

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    17

  • Pages from-to

    "36-1"-"36-17"

  • Publisher name

    Dagstuhl Publishing

  • Place of publication

    Wadern

  • Event location

    Antwerp

  • Event date

    Sep 18, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article