An algebraic analysis of implication in non-distributive logics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F23%3A73621055" target="_blank" >RIV/61989592:15310/23:73621055 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14310/23:00134050
Result on the web
<a href="https://academic.oup.com/logcom/article/33/1/47/6615451" target="_blank" >https://academic.oup.com/logcom/article/33/1/47/6615451</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/logcom/exac041" target="_blank" >10.1093/logcom/exac041</a>
Alternative languages
Result language
angličtina
Original language name
An algebraic analysis of implication in non-distributive logics
Original language description
In this paper, we introduce the concept of a (lattice) skew Hilbert algebra as a natural generalization of Hilbert algebras. This notion allows a unified treatment of several structures of prominent importance for mathematical logic, e.g. (generalized) orthomodular lattices, and MV-algebras, which admit a natural notion of implication. In fact, it turns out that skew Hilbert algebras play a similar role for (strongly) sectionally pseudocomplemented posets as Hilbert algebras do for relatively pseudocomplemented ones. We will discuss basic properties of closed, dense and weakly dense elements of skew Hilbert algebras and their applications, and we will provide some basic results on their structure theory.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GF20-09869L" target="_blank" >GF20-09869L: The many facets of orthomodularity</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF LOGIC AND COMPUTATION
ISSN
0955-792X
e-ISSN
1465-363X
Volume of the periodical
33
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
43
Pages from-to
47-89
UT code for WoS article
000815515700001
EID of the result in the Scopus database
2-s2.0-85159586489