All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

An algebraic analysis of implication in non-distributive logics

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F23%3A73621055" target="_blank" >RIV/61989592:15310/23:73621055 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14310/23:00134050

  • Result on the web

    <a href="https://academic.oup.com/logcom/article/33/1/47/6615451" target="_blank" >https://academic.oup.com/logcom/article/33/1/47/6615451</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/logcom/exac041" target="_blank" >10.1093/logcom/exac041</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    An algebraic analysis of implication in non-distributive logics

  • Original language description

    In this paper, we introduce the concept of a (lattice) skew Hilbert algebra as a natural generalization of Hilbert algebras. This notion allows a unified treatment of several structures of prominent importance for mathematical logic, e.g. (generalized) orthomodular lattices, and MV-algebras, which admit a natural notion of implication. In fact, it turns out that skew Hilbert algebras play a similar role for (strongly) sectionally pseudocomplemented posets as Hilbert algebras do for relatively pseudocomplemented ones. We will discuss basic properties of closed, dense and weakly dense elements of skew Hilbert algebras and their applications, and we will provide some basic results on their structure theory.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GF20-09869L" target="_blank" >GF20-09869L: The many facets of orthomodularity</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    JOURNAL OF LOGIC AND COMPUTATION

  • ISSN

    0955-792X

  • e-ISSN

    1465-363X

  • Volume of the periodical

    33

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    43

  • Pages from-to

    47-89

  • UT code for WoS article

    000815515700001

  • EID of the result in the Scopus database

    2-s2.0-85159586489