Identification problem for nonlinear beam - extension for different types of boundary conditions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F23%3A73621386" target="_blank" >RIV/61989592:15310/23:73621386 - isvavai.cz</a>
Result on the web
<a href="https://dml.cz/bitstream/handle/10338.dmlcz/703200/PANM_21-2022-1_21.pdf" target="_blank" >https://dml.cz/bitstream/handle/10338.dmlcz/703200/PANM_21-2022-1_21.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21136/panm.2022.18" target="_blank" >10.21136/panm.2022.18</a>
Alternative languages
Result language
angličtina
Original language name
Identification problem for nonlinear beam - extension for different types of boundary conditions
Original language description
Identification problem is a framework of mathematical problems dealing with the search for optimal values of the unknown coefficients of the considered model. Using experimentally measured data, the aim of this work is to determine the coefficients of the given differential equation. This paper deals with the extension of the continuous dependence results for the Gao beam identification problem with different types of boundary conditions by using appropriate analytical inequalities with a special attention given to theWirtinger’s inequality and its modification. On the basis of these results for the different types of the boundary conditions the existence theorem for the identification problem can be proven
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/EF17_049%2F0008408" target="_blank" >EF17_049/0008408: Hydrodynamic design of pumps</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Programs and Algorithms of Numerical Mathematics 21
ISBN
978-80-85823-73-8
ISSN
—
e-ISSN
—
Number of pages
10
Pages from-to
199-208
Publisher name
Matematický ústav AV ČR
Place of publication
Praha
Event location
Jablonec nad Nisou
Event date
Jun 19, 2022
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—