All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Unique structural attributes of the PSI-NDH supercomplex in Physcomitrium patens

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F24%3A73626979" target="_blank" >RIV/61989592:15310/24:73626979 - isvavai.cz</a>

  • Result on the web

    <a href="https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.17116" target="_blank" >https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.17116</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/tpj.17116" target="_blank" >10.1111/tpj.17116</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Unique structural attributes of the PSI-NDH supercomplex in Physcomitrium patens

  • Original language description

    Cyclic electron transport around photosystem I (PSI) is essential for the protection of the photosynthetic apparatus in plants under diverse light conditions. This process is primarily mediated by Proton Gradient Regulation 5 protein/Proton Gradient Regulation 5-like photosynthetic phenotype 1 protein (PGR5/PGRL1) and NADH dehydrogenase-like complex (NDH). In angiosperms, NDH interacts with two PSI complexes through distinct monomeric antennae, LHCA5 and LHCA6, which is crucial for its higher stability under variable light conditions. This interaction represents an advanced evolutionary stage and offers limited insight into the origin of the PSI-NDH supercomplex in evolutionarily older organisms. In contrast, the moss Physcomitrium patens (Pp), which retains the lhca5 gene but lacks the lhca6, offers a glimpse into an earlier evolutionary stage of the PSI-NDH supercomplex. Here we present structural evidence of the Pp PSI-NDH supercomplex formation by single particle electron microscopy, demonstrating the unique ability of Pp to bind a single PSI in two different configurations. One configuration closely resembles the angiosperm model, whereas the other exhibits a novel PSI orientation, rotated clockwise. This structural flexibility in Pp is presumably enabled by the variable incorporation of LHCA5 within PSI and is indicative of an early evolutionary adaptation that allowed for greater diversity at the PSI-NDH interface. Our findings suggest that this variability was reduced as the structural complexity of the NDH complex increased in vascular plants, primarily angiosperms. This study not only clarifies the evolutionary development of PSI-NDH supercomplexes but also highlights the dynamic nature of the adaptive mechanisms of plant photosynthesis.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10610 - Biophysics

Result continuities

  • Project

    <a href="/en/project/EH22_008%2F0004624" target="_blank" >EH22_008/0004624: PHOTOMACHINES - Photosynthetic cell redesign for high yields of therapeutic peptides</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    PLANT JOURNAL

  • ISSN

    0960-7412

  • e-ISSN

    1365-313X

  • Volume of the periodical

    120

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    12

  • Pages from-to

    "2226 "- 2237

  • UT code for WoS article

    001357311400001

  • EID of the result in the Scopus database

    2-s2.0-85208095546