Representation and Embedding of Pseudo MV-algebras with Square Roots I. Strict Square Roots
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F24%3A73627587" target="_blank" >RIV/61989592:15310/24:73627587 - isvavai.cz</a>
Result on the web
<a href="https://arxiv.org/abs/2306.04623" target="_blank" >https://arxiv.org/abs/2306.04623</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.48550/arXiv.2306.04623" target="_blank" >10.48550/arXiv.2306.04623</a>
Alternative languages
Result language
angličtina
Original language name
Representation and Embedding of Pseudo MV-algebras with Square Roots I. Strict Square Roots
Original language description
In [17], we started the investigation of pseudo MV-algebras with square roots. In the present paper, we continue to study the structure of pseudo MV-algebras with square roots focusing on their new characterizations. The paper is divided into two parts. In the present first part, we investigate the relationship between a pseudo MV-algebra with square root and its corresponding unital & ell;-group in the scene of two-divisibility. We characterize strict and non-strict square roots and we describe square roots on strongly(H,1)-perfect pseudo MV-algebras. In the second part, we find some conditions under which a particular class of pseudo MV-algebras can be embedded into pseudo MV-algebras with square roots. We investigate the concepts of a strict square root closure and a square root closure of a pseudo MV-algebra, and we compare both notions. We show that each MV-algebra has a square root closure. Finally, using the square root of individual elements of a pseudo MV-algebra, we find the greatest subalgebra of a special pseudo MV-algebra with weak square roots.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Applied Logics
ISSN
2631-9810
e-ISSN
2631-9829
Volume of the periodical
11
Issue of the periodical within the volume
4
Country of publishing house
GB - UNITED KINGDOM
Number of pages
29
Pages from-to
"499 "- 527
UT code for WoS article
001308414500004
EID of the result in the Scopus database
2-s2.0-85202882686