Algebraic model of difference equations and functional equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15410%2F14%3A33157404" target="_blank" >RIV/61989592:15410/14:33157404 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Algebraic model of difference equations and functional equations
Original language description
We will deal with the theory of Abel functional equations in the space of strictly monotonic functions $S$. The Abel functional equation model reduces under specialization to a linear functional or to a linear difference equation. Definitions, structure,and general theory for Abel functional equations on $S$ appear. The approach duplicates a rich body of known definitions, results and properties for classical functional and difference equations. The setting for the algebraic model is in the space $S$ of strictly monotonic real functions $f$ defined on the interval $cal J=(-infty,infty)$. It is required that $f$ map $cal J$ one-to-one onto an interval $(a,b)$, where $a$ and $b$ are extended real numbers. The model equation is expressed in terms ofiteration of a function $Phi$ in $S$. The iteration process uses a {em canonical function} in $S$, which is an arbitrarily chosen increasing function $Xin S$. A method is presented for solving the new model equation. This method can be
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Matematički Bilten
ISSN
0351-336X
e-ISSN
—
Volume of the periodical
38 (LXIV)
Issue of the periodical within the volume
2
Country of publishing house
MK - REPUBLIC OF NORTH MACEDONIA
Number of pages
9
Pages from-to
13-21
UT code for WoS article
—
EID of the result in the Scopus database
—