Microstructural and magnetic properties of Mn2FeSi and Mn2FeAl alloys prepared in bulk form
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15640%2F23%3A73620624" target="_blank" >RIV/61989592:15640/23:73620624 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/23:10475560 RIV/61989100:27240/23:10252083 RIV/61989100:27360/23:10252083
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0925838823009751?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0925838823009751?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jallcom.2023.169672" target="_blank" >10.1016/j.jallcom.2023.169672</a>
Alternative languages
Result language
angličtina
Original language name
Microstructural and magnetic properties of Mn2FeSi and Mn2FeAl alloys prepared in bulk form
Original language description
Microstructural and magnetic properties of the Mn2FeSi and Mn2FeAl alloys prepared in the bulk form have been investigated. Cylinder-shaped ingots produced by induction melting technique were analyzed in asquenched state and additionally annealed at 773 K for 5 days in the protective argon atmosphere. The results show that Si and Al have different effects on the microstructural and magnetic properties of the alloys. The Mn2FeAl ingots are single-phase both before and after annealing, and their diffractograms surprisingly correspond not to the Heusler (L21 or XA) but to the primitive cubic beta-Mn structure. Conversely, Mn2FeSi alloys show a two-phase behavior in the as-quenched state. From results of X-ray diffraction it was not possible to judge whether Mn2FeSi alloy has the inverse-Heusler (XA) or full Heusler (L21) structure. Annealing of Mn2FeSi leads to the formation of multiple phases. The EDX chemical area analyses resulted in only slight deviations of compositions compared to the nominal ones. The lattice parameters of 0.5672 nm and 0.6339 nm were estimated for the Mn2FeSi and Mn2FeAl samples from X-ray diffraction measurements. From the magnetic viewpoint, all samples are paramagnetic at room temperature and transform into antiferromagnetic state at the N e el temperatures about 50 K and 36 K for Mn2FeSi and Mn2FeAl, respectively. The negative Curie temperatures determined at all samples by Curie-Weiss law indicate an antiferromagnetic ordering of spins. Positron annihilation investigations revealed that Mn2FeSi contains a high concentration of vacancies. The local chemical environment of vacancies characterized by coincidence Doppler broadening is compatible with L21 rather than with XA structure. In contrast vacancy concentration in Mn2FeAl is very low and almost all positrons are annihilated in the free state. (c) 2023 Elsevier B.V. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
21002 - Nano-processes (applications on nano-scale); (biomaterials to be 2.9)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF ALLOYS AND COMPOUNDS
ISSN
0925-8388
e-ISSN
1873-4669
Volume of the periodical
947
Issue of the periodical within the volume
June
Country of publishing house
CH - SWITZERLAND
Number of pages
11
Pages from-to
—
UT code for WoS article
000955828700001
EID of the result in the Scopus database
2-s2.0-85150021852