All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Metastable Ni(I)-TiO2-x Photocatalysts: Self-Amplifying H2 Evolution from Plain Water without Noble Metal Co-Catalyst and Sacrificial Agent

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15640%2F23%3A73621669" target="_blank" >RIV/61989592:15640/23:73621669 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27640/23:10253967

  • Result on the web

    <a href="https://pubs.acs.org/doi/10.1021/jacs.3c08199" target="_blank" >https://pubs.acs.org/doi/10.1021/jacs.3c08199</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/jacs.3c08199" target="_blank" >10.1021/jacs.3c08199</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Metastable Ni(I)-TiO2-x Photocatalysts: Self-Amplifying H2 Evolution from Plain Water without Noble Metal Co-Catalyst and Sacrificial Agent

  • Original language description

    Decoration of semiconductor photocatalysts with cocatalysts is generally done by a step-by-step assembly process. Here, we describe the self-assembling and self-activating nature of a photocatalytic system that forms under illumination of reduced anatase TiO2 nanoparticles in an aqueous Ni2+ solution. UV illumination creates in situ a Ni+/TiO2/Ti3+ photocatalyst that self-activates and, over time, produces H-2 at a higher rate. In situ X-ray absorption spectroscopy and electron paramagnetic resonance spectroscopy show that key to self-assembly and self-activation is the light-induced formation of defects in the semiconductor, which enables the formation of monovalent nickel (Ni+) surface states. Metallic nickel states, i.e., Ni-0, do not form under the dark (resting state) or under illumination (active state). Once the catalyst is assembled, the Ni+ surface states act as electron relay for electron transfer to form H-2 from water, in the absence of sacrificial species or noble metal cocatalysts.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    21002 - Nano-processes (applications on nano-scale); (biomaterials to be 2.9)

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000416" target="_blank" >EF15_003/0000416: Advanced Hybrid Nanostructures for Renewable Energy Applications</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

  • ISSN

    0002-7863

  • e-ISSN

    1520-5126

  • Volume of the periodical

    145

  • Issue of the periodical within the volume

    48

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    11

  • Pages from-to

    "26122 "- 26132

  • UT code for WoS article

    001123090300001

  • EID of the result in the Scopus database

    2-s2.0-85178569996