All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Robust testing for normality of error terms with presence of autocorrelation and conditional heteroscedasticity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F17%3A43910795" target="_blank" >RIV/62156489:43110/17:43910795 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1063/1.4972747" target="_blank" >http://dx.doi.org/10.1063/1.4972747</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.4972747" target="_blank" >10.1063/1.4972747</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Robust testing for normality of error terms with presence of autocorrelation and conditional heteroscedasticity

  • Original language description

    Normality of the error terms in regression models is one of the basic assumptions in the applied regression analysis. Therefore, testing for normality of the error terms constitutes one of the most important steps of regression model verification and validation. Failure to assess non-normality of the error terms may lead to incorrect results of usual statistical inference techniques such as t-test or F-test. Within the applied regression analysis there is a frequent problem of the presence of autocorrelation and conditional heteroscedasticity of the error terms. Under both autocorrelation and heteroscedasticity, the usual OLS estimators are still unbiased, linear and asymptotically normally distributed, however, no longer have the minimum variance property among all linear unbiased estimators. Therefore, the aim of this paper is to present and discuss normality testing of the error terms with presence of autocorrelation and conditional heteroscedasticity. To explore the power of selected classical tests and robust tests for normality, we perform simulation study.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/GA16-07089S" target="_blank" >GA16-07089S: Robust approach to testing for normality of error terms in econometric models</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    AIP Conference Proceedings 1798

  • ISBN

    978-0-7354-1464-8

  • ISSN

  • e-ISSN

    neuvedeno

  • Number of pages

    6

  • Pages from-to

    &quot;Nestránkováno&quot;

  • Publisher name

    American Institute of Physics (AIP)

  • Place of publication

    Melville

  • Event location

    La Rochelle

  • Event date

    Jul 4, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000399203000154