Robust testing for normality of error terms with presence of autocorrelation and conditional heteroscedasticity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F17%3A43910795" target="_blank" >RIV/62156489:43110/17:43910795 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1063/1.4972747" target="_blank" >http://dx.doi.org/10.1063/1.4972747</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.4972747" target="_blank" >10.1063/1.4972747</a>
Alternative languages
Result language
angličtina
Original language name
Robust testing for normality of error terms with presence of autocorrelation and conditional heteroscedasticity
Original language description
Normality of the error terms in regression models is one of the basic assumptions in the applied regression analysis. Therefore, testing for normality of the error terms constitutes one of the most important steps of regression model verification and validation. Failure to assess non-normality of the error terms may lead to incorrect results of usual statistical inference techniques such as t-test or F-test. Within the applied regression analysis there is a frequent problem of the presence of autocorrelation and conditional heteroscedasticity of the error terms. Under both autocorrelation and heteroscedasticity, the usual OLS estimators are still unbiased, linear and asymptotically normally distributed, however, no longer have the minimum variance property among all linear unbiased estimators. Therefore, the aim of this paper is to present and discuss normality testing of the error terms with presence of autocorrelation and conditional heteroscedasticity. To explore the power of selected classical tests and robust tests for normality, we perform simulation study.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/GA16-07089S" target="_blank" >GA16-07089S: Robust approach to testing for normality of error terms in econometric models</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
AIP Conference Proceedings 1798
ISBN
978-0-7354-1464-8
ISSN
—
e-ISSN
neuvedeno
Number of pages
6
Pages from-to
"Nestránkováno"
Publisher name
American Institute of Physics (AIP)
Place of publication
Melville
Event location
La Rochelle
Event date
Jul 4, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000399203000154