All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Automatic Lane Marking Extraction From Point Cloud Into Polygon Map Layer

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F17%3A43911676" target="_blank" >RIV/62156489:43110/17:43911676 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216305:26210/17:PU124412

  • Result on the web

    <a href="http://symposium.earsel.org/37th-symposium-Prague/wp-content/uploads/2016/06/2017_EARSeL_abstract_book.pdf" target="_blank" >http://symposium.earsel.org/37th-symposium-Prague/wp-content/uploads/2016/06/2017_EARSeL_abstract_book.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Automatic Lane Marking Extraction From Point Cloud Into Polygon Map Layer

  • Original language description

    Optimization of road networks is a common concern worldwide, primarily for safety purposes. Because the extent of these networks is substantial, automation of their inventory is highly desirable. This paper concentrates on the road inventory process that is necessary for regular maintenance. The key part of our road marking detection and reconstruction is based on spanning tree usage. The spanning trees are obtained from alpha shapes of the detected road markings. Application of the spanning trees enables the reliable identification of the road markings and precise reconstruction of the of their contours even with noisy data. Our method processes the point cloud data obtained from LiDAR measurements, and provides a common vector layer with road line polygons. Such a vector layer is stored in a common file format ESRI Shapefile supported by the majority of geographical information systems, thus producing an output that can be conveniently used for decision-making based on the road inventory process. Our key advantage is the ability to reconstruct the precise shapes of the road lane markings. The reconstructed shapes can be used for the visualization as well as for analytic purposes. Our approach is very reliable as shown in the results. We used two different testing areas. The first tested area is located in the Brno city centre in the Czech Republic, particularly in the vicinity of the Mendel Square. It comprises common streets and squares. The roads contain multiple road lanes for cars as well as separate lanes for trams and trolleybuses. The second tested area is the country round near Semice town in the Czech Republic. The true positive rate of detection is in all cases above 92 %. Therefore, we are able to detect correctly vast majority of road lane markings.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů