All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cross-Language Source Code Plagiarism Detection using Explicit Semantic Analysis and Scored Greedy String Tilling

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F20%3A43918181" target="_blank" >RIV/62156489:43110/20:43918181 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1145/3383583.3398594" target="_blank" >https://doi.org/10.1145/3383583.3398594</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3383583.3398594" target="_blank" >10.1145/3383583.3398594</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cross-Language Source Code Plagiarism Detection using Explicit Semantic Analysis and Scored Greedy String Tilling

  • Original language description

    We present a method for source code plagiarism detection that is independent of the programming language. Our method EsaGst combines Explicit Semantic Analysis and Greedy String Tiling. Using 25 cases of source code plagiarism in C++, Java, JavaScript, PHP, and Python, we show that EsaGst outperforms a baseline method in identifying plagiarism across programming languages.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    50803 - Information science (social aspects)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020 (JCDL &apos;20)

  • ISBN

    978-1-4503-7585-6

  • ISSN

  • e-ISSN

  • Number of pages

    2

  • Pages from-to

    523-524

  • Publisher name

    Association for Computing Machinery (ACM)

  • Place of publication

    New York

  • Event location

    Wu-chan

  • Event date

    Aug 1, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article