Exploring, Categorisation and Usage of Artificial Intelligence Algorithms for Supply Chain Management
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F23%3A43924526" target="_blank" >RIV/62156489:43110/23:43924526 - isvavai.cz</a>
Result on the web
<a href="https://www.doi.org/10.17512/CUT/9788371939563/18" target="_blank" >https://www.doi.org/10.17512/CUT/9788371939563/18</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.17512/CUT/9788371939563/18" target="_blank" >10.17512/CUT/9788371939563/18</a>
Alternative languages
Result language
angličtina
Original language name
Exploring, Categorisation and Usage of Artificial Intelligence Algorithms for Supply Chain Management
Original language description
This paper explores the categorisation and usage of Artificial intelligence Algorithms (AIA) in Supply Chain Management (SCM) and discusses the potential benefits and challenges of implementing AI in SCM. The study reviews the literature on the application of AI in SCM. It provides a comprehensive list of commonly used algorithms in different SCM applications, such as vendor selection, production planning, resource allocation, quality control, predictive maintenance, visibility, demand forecasting, inventory optimisation, transportation optimisation, and customer segmentation. The paper highlights the versatility and potential for the cross-functional use of many AI algorithms. It identifies challenges and limitations, including data quality and availability, privacy and security concerns, and a lack of understanding and trust in AI systems. The study concludes that AI has the potential to significantly impact SCM by increasing efficiency, accuracy, and flexibility while reducing costs. However, further research is needed to develop best practices for adopting and implementing AI in SCM and to address ethical implications related to AI in SCM.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
International Conference on Management „Sustainability – Security – Quality“: Book of Proceedings
ISBN
978-83-7193-956-3
ISSN
—
e-ISSN
—
Number of pages
9
Pages from-to
118-126
Publisher name
Czestochowa University of Technology
Place of publication
Częstochowa
Event location
Czestochowa
Event date
Jun 15, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—