Survey of Large Language Models on the Text Generation Task
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F24%3A43925828" target="_blank" >RIV/62156489:43110/24:43925828 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.11118/978-80-7509-990-7-0195" target="_blank" >https://doi.org/10.11118/978-80-7509-990-7-0195</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.11118/978-80-7509-990-7-0195" target="_blank" >10.11118/978-80-7509-990-7-0195</a>
Alternative languages
Result language
angličtina
Original language name
Survey of Large Language Models on the Text Generation Task
Original language description
This paper focuses on the comparison of GPT, GPT-2, XLNet, T5 models on text generation tasks. None of the autoencoder models are included in the comparison ranking due to their unsuitability for text generation tasks. The comparison of the models was performed using the BERT-score metric, which calculates precision, recall and F1 values for each sentence. The median was used to obtain the final results from this metric. A preprocessed dataset of empathetic dialogues was used to test the models, which is presented in this paper and compared with other datasets containing dialogues in English. The tested models were only pre-trained and there was no fine-tune on the dataset used for testing. The transformers library from Hugging face and the Python language were used to test the models. The research showed on the pre-trained dataset empathic dialogues has the highest precision model T5, recall and F1 has the highest precision model GPT-2.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF16_017%2F0002334" target="_blank" >EF16_017/0002334: Research Infrastructure for Young Scientists</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
26th International Conference Economic Competitiveness and Sustainability: Proceedings
ISBN
978-80-7509-990-7
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
195-200
Publisher name
Mendelova univerzita v Brně
Place of publication
Brno
Event location
Brno
Event date
Mar 21, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—