Identification of Human Enzymes Oxidizing the Anti-Thyroid-Cancer Drug Vandetanib and Explanation of the High Efficiency of Cytochrome P450 3A4 in its Oxidation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43210%2F19%3A43916153" target="_blank" >RIV/62156489:43210/19:43916153 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11310/19:10395464 RIV/00216208:11130/19:10395464 RIV/00064203:_____/19:10395464
Result on the web
<a href="https://doi.org/10.3390/ijms20143392" target="_blank" >https://doi.org/10.3390/ijms20143392</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/ijms20143392" target="_blank" >10.3390/ijms20143392</a>
Alternative languages
Result language
angličtina
Original language name
Identification of Human Enzymes Oxidizing the Anti-Thyroid-Cancer Drug Vandetanib and Explanation of the High Efficiency of Cytochrome P450 3A4 in its Oxidation
Original language description
The metabolism of vandetanib, a tyrosine kinase inhibitor used for treatment of symptomatic/progressive medullary thyroid cancer, was studied using human hepatic microsomes, recombinant cytochromes P450 (CYPs) and flavin-containing monooxygenases (FMOs). The role of CYPs and FMOs in the microsomal metabolism of vandetanib to N-desmethylvandetanib and vandetanib-N-oxide was investigated by examining the effects of CYP/FMO inhibitors and by correlating CYP-/FMO-catalytic activities in each microsomal sample with the amounts of N-desmethylvandetanib/vandetanib-N-oxide formed by these samples. CYP3A4/FMO-activities significantly correlated with the formation of N-desmethylvandetanib/ vandetanib-N-oxide. Based on these studies, most of the vandetanib metabolism was attributed to N-desmethylvandetanib/vandetanib-N-oxide to CYP3A4/FMO3. Recombinant CYP3A4 was most efficient to form N-desmethylvandetanib, while FMO1/FMO3 generated N-oxide. Cytochrome b5 stimulated the CYP3A4-catalyzed formation of N-desmethylvandetanib, which is of great importance because CYP3A4 is not only most efficient in generating N-desmethylvandetanib, but also most significant due to its high expression in human liver. Molecular modeling indicated that binding of more than one molecule of vandetanib into the CYP3A4-active center can be responsible for the high efficiency of CYP3A4 N-demethylating vandetanib. Indeed, the CYP3A4-mediated reaction exhibits kinetics of positive cooperativity and this corresponded to the in silico model, where two vandetanib molecules were found in CYP3A4-active center.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10608 - Biochemistry and molecular biology
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Molecular Sciences
ISSN
1661-6596
e-ISSN
—
Volume of the periodical
20
Issue of the periodical within the volume
14
Country of publishing house
CH - SWITZERLAND
Number of pages
22
Pages from-to
3392
UT code for WoS article
000480449300017
EID of the result in the Scopus database
2-s2.0-85069769458