All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Methanogens Diversity during Anaerobic Sewage Sludge Stabilization and the Effect of Temperature

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43210%2F20%3A43918078" target="_blank" >RIV/62156489:43210/20:43918078 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14310/20:00115954

  • Result on the web

    <a href="https://doi.org/10.3390/pr8070822" target="_blank" >https://doi.org/10.3390/pr8070822</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/pr8070822" target="_blank" >10.3390/pr8070822</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Methanogens Diversity during Anaerobic Sewage Sludge Stabilization and the Effect of Temperature

  • Original language description

    Anaerobic sludge stabilization is a commonly used technology. Most fermenters are operated at a mesophilic temperature regime. Modern trends in waste management aim to minimize waste generation. One of the strategies can be achieved by anaerobically stabilizing the sludge by raising the temperature. Higher temperatures will allow faster decomposition of organic matter, shortening the retention time, and increasing biogas production. This work is focused on the description of changes in the community of methanogenic microorganisms at different temperatures during the sludge stabilization. At higher temperatures, biogas contained a higher percentage of methane, however, there was an undesirable accumulation of ammonia in the fermenter. Representatives of the hydrogenotrophic genus Methanoliea were described at all temperatures tested. At temperatures up to 50 oC, a significant proportion of methanogens were also formed by acetoclastic representatives of Methanosaeta sp. and acetoclastic representatives of the order Methanosarcinales. The composition of methanogens in the fermenter significantly changed at 60 oC when typically thermophilic species, like Methanothermobacter marburgensis, appeared. A decrease in the diversity of methanogens was observed, and typical hydrogenotrophic methanogenic archaea isolated from fermenters of biogas plants and anaerobic wastewater treatment plants represented by genus Methanoculleus were no longer present.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20801 - Environmental biotechnology

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Processes

  • ISSN

    2227-9717

  • e-ISSN

  • Volume of the periodical

    8

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    12

  • Pages from-to

    822

  • UT code for WoS article

    000558047400001

  • EID of the result in the Scopus database

    2-s2.0-85088582680