First derivatives of fuzzy surfaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43310%2F17%3A43912856" target="_blank" >RIV/62156489:43310/17:43912856 - isvavai.cz</a>
Result on the web
<a href="http://ami.ektf.hu/uploads/papers/finalpdf/AMI_47_from19to40.pdf" target="_blank" >http://ami.ektf.hu/uploads/papers/finalpdf/AMI_47_from19to40.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
First derivatives of fuzzy surfaces
Original language description
The presented research shows how the first derivatives (slope and aspect) can be calculated from a fuzzy surface by the means of fuzzy arithmetic within the geographic information system. The proposed method works with fuzzy numbers of arbitrary shape which helps with more precise specification of input values as well as more exact calculation of results. Three most important methods of partial derivatives calculation based on finite elements approximation of a surface are presented and discussed. The presented approach provides an alternative for uncertainty propagation that is commonly performed by the utilization of statistics and the Monte Carlo method in geographic applications. The example calculation shows the differences between the obtained results calculated with the utilization of fuzzy arithmetic and the Monte Carlo method.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annales Mathematicae et Informaticae
ISSN
1787-5021
e-ISSN
—
Volume of the periodical
47
Issue of the periodical within the volume
1
Country of publishing house
HU - HUNGARY
Number of pages
22
Pages from-to
19-40
UT code for WoS article
000424545000002
EID of the result in the Scopus database
2-s2.0-85039762105