All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Assessing Forest Classification in a Landscape-Level Framework: An Example from Central European Forests

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43410%2F17%3A43912049" target="_blank" >RIV/62156489:43410/17:43912049 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3390/f8120461" target="_blank" >https://doi.org/10.3390/f8120461</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/f8120461" target="_blank" >10.3390/f8120461</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Assessing Forest Classification in a Landscape-Level Framework: An Example from Central European Forests

  • Original language description

    Traditional land classifications developed on the basis of what was once prevailing expert knowledge have since largely become obsolete. We assessed expert knowledge based landscape-level units delineated in central European temperate forests: Natural Forest Areas (NFA) and Forest Vegetation Zones (FVZ). Our focus was determining to what degree these units reflect vegetation-environmental relationships. After considering as many as 49,000 plots with vegetation and 25,000 plots with environmental data within a territory of the Czech Republic, we analyzed 11,885 plots. We used multivariate statistics to discriminate between the landscape-level units. While NFAs performed extremely well, FVZ results were less successful. Classification of the environment provided better results than classification of vegetation for both the Hercynicum and Carpaticum phytogeographic part of the Czech Republic. Taking into account significance of the environment in our analysis, a delimitation of FVZs and similar vegetation-driven structures worldwide via explicit a priori stratification by tree species without consideration of environmental limits would not be supported by our analysis. We suggest not relying only on vegetation in classification analyses, but also including the significant environmental factors for direct classification of FVZ and units in particular in altered vegetation composition setting such as the central European forests. We propose a novel interpretation of FVZ via appropriate vegetation stratification throughout the environment used in conjunction with the zonal concept. Understanding of coarse-scaled vegetation-environmental relationships is not only fundamental in forest ecology and forest management, but is also essential for improving lower classification levels.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    40102 - Forestry

Result continuities

  • Project

    <a href="/en/project/EE2.3.20.0004" target="_blank" >EE2.3.20.0004: Creation and development of multidisciplinary team on the basis of landscape ecology</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Forests

  • ISSN

    1999-4907

  • e-ISSN

  • Volume of the periodical

    8

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    20

  • Pages from-to

    "nestrankovano"

  • UT code for WoS article

    000419210800002

  • EID of the result in the Scopus database

    2-s2.0-85034987286