All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Ecotone Dynamics and Stability from Soil Perspective: Forest-Agriculture Land Transition

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43410%2F19%3A43916492" target="_blank" >RIV/62156489:43410/19:43916492 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3390/agriculture9100228" target="_blank" >https://doi.org/10.3390/agriculture9100228</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/agriculture9100228" target="_blank" >10.3390/agriculture9100228</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Ecotone Dynamics and Stability from Soil Perspective: Forest-Agriculture Land Transition

  • Original language description

    Topographic and edaphic gradients usually arrange ecotonal boundaries. Although the interrelationships between vegetation and edaphic factors are relevant in most types of ecotones, they are not adequately documented. The clearly defined forest-agriculture land ecotone at the Proklest experimental site of the Training Forest Enterprise (T.F.E), Masaryk Forest Křtiny, Czech Republic presents an opportunity to investigate these inter-relationships. Our aim was to determine ecotone effects reflected by changes in soil reaction and other soil physical properties across this clearly defined forest-agriculture land ecotone. We selected eleven sampling spots: four in the forest zone, four in the agriculture land, and three in the ecotone zone between the forest and agriculture land. Every month from April to November, soil samples were collected at a depth of 5 cm. All the soil samples collected were examined for minimal air capacity, actual and potential soil reaction, and maximum capillary water capacity. The forest soil was slightly more acidic when compared to the agriculture soil, with the ecotone zone recording the lowest pH value. The maximum capillary water capacity was higher in the forest region than in the agriculture land with a sharp decline in the ecotone zone where the lowest value was recorded. The minimum air capacity was much higher in the forest region than in the agriculture land. There was a marked decline in the ecotone region where the lowest value was observed. Our results highlight the importance of soil as a factor affecting the distribution of plant communities along ecotones.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    40104 - Soil science

Result continuities

  • Project

    <a href="/en/project/TA04020888" target="_blank" >TA04020888: Contactless monitoring and spatio-temporally modelling variability of selected differing soil characteristics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Agriculture

  • ISSN

    2077-0472

  • e-ISSN

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    10

  • Pages from-to

    228

  • UT code for WoS article

    000494831900012

  • EID of the result in the Scopus database

    2-s2.0-85074237179