All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Using Resilient Modulus to Determine the Subgrade Suitability for Forest Road Construction

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43410%2F20%3A43918755" target="_blank" >RIV/62156489:43410/20:43918755 - isvavai.cz</a>

  • Alternative codes found

    RIV/75081431:_____/20:00001887

  • Result on the web

    <a href="https://doi.org/10.3390/f11111208" target="_blank" >https://doi.org/10.3390/f11111208</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/f11111208" target="_blank" >10.3390/f11111208</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Using Resilient Modulus to Determine the Subgrade Suitability for Forest Road Construction

  • Original language description

    Forest roads are often constructed in environments with low bearing capacity of the subgrade. The subgrade then has an effect on their service life and damage. According to the methodology of the American Association of State Higway and Transportation Officiales AASHTO, the design of pavement is divided into three levels according to the intensity of the traffic load. For pavements with the highest load intensity, preparing the resilient modulus from a cyclic triaxial test is required. For other traffic load classes, including forest roads, the methodology allows the use of the estimate of resilient modulus value determined from other tests. In the laboratory at the Faculty of Forestry, Mendel University of Brno, the method from the Delft University 2009 was tested and subsequently modified, using a standard CBR machine for repeated loading. A total of 276 samples from various types of forest road subgrade from the Czech Republic were tested by the method of repeated loading on the CBR machine, from which the values of the Resilient Modulus were newly labelled Mr,CBR. The results of the statistical analysis showed a large variability of Mr,CBR values and wide intervals of its occurrence for individual types of subgrade. The variability was subjected to analysis and the influence of basic geotechnical parameters on the values of Mr,CBR was analyzed. A fundamental correlation was found between the value of Mr,CBR and the value of the plunger stress, which reached values exceeding the bearing capacity of the soil types using the Delft University method. It is necessary to limit the plunger stress during cyclic loading up to the failure limit or even better to the expected traffic load. The modified procedure results show a more consistent behavior of the modulus.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    40102 - Forestry

Result continuities

  • Project

    <a href="/en/project/TA01020326" target="_blank" >TA01020326: Optimization of design and realization of low capacity roads pavements.</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Forests

  • ISSN

    1999-4907

  • e-ISSN

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    17

  • Pages from-to

    1208

  • UT code for WoS article

    000593217900001

  • EID of the result in the Scopus database

    2-s2.0-85096797037