All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Immobilization of Cd in soil by biochar and new emerging chemically produced carbon

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43410%2F21%3A43919900" target="_blank" >RIV/62156489:43410/21:43919900 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.jksus.2021.101472" target="_blank" >https://doi.org/10.1016/j.jksus.2021.101472</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jksus.2021.101472" target="_blank" >10.1016/j.jksus.2021.101472</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Immobilization of Cd in soil by biochar and new emerging chemically produced carbon

  • Original language description

    Utilization of industrial and household wastes as fertilizer while wastewater as irrigation are common practices in developing country&apos;s agriculture. These practices played an imperative role in the accumulation of heavy metals in soil. Among different heavy metals, cadmium (Cd) contamination in soils has been rising to an alarming level. The contribution of natural activities is relatively low over anthropogenic activities for Cd buildup in the soil. Its toxicity adversely affects human health, soil and plant productivity. Instead of chemicals remediation, a nature-friendly biochar is suggested as a promising remedy to reclaim Cd-contaminated soils. Owing to high stability, greater surface area, and exchange sites, biochar can adsorb heavy metals. Thus, significantly reducing metals mobility, bioavailability, and uptake of heavy metals by the plant. It has active functional groups like ketones, carboxylic, and diols that bind the Cd and other metals. Biochar can also mitigate the harmful effect of Cd by improving plant chlorophyll contents, photosynthesis activity, SOP, POD and CAT enzyme activity through better availability of essential. Furthermore, the application of acidified biochar into alkaline soil is also gaining attention. It plays a vital role in declining soil pH, sodium adsorption ratio (SAR), and improving the availability of immobilized nutrients. Scientists are also working on acidified carbon (AC) chemical production to investigate its potential benefits in high pH soils. This review will help to provide the basis for understanding the potential benefits of thermopyrolyzed biochar and chemically produced AC, especially in Cd-contaminated sites. However, more advanced and in-depth investigations are required to use chemically produced carbon as an amendment against Cd and other heavy metals toxicity.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10511 - Environmental sciences (social aspects to be 5.7)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of King Saud University - Science

  • ISSN

    1018-3647

  • e-ISSN

  • Volume of the periodical

    33

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    9

  • Pages from-to

    101472

  • UT code for WoS article

    000661668500002

  • EID of the result in the Scopus database

    2-s2.0-85106948171