Supplemental Effects of Biochar and Foliar Application of Ascorbic Acid on Physio-Biochemical Attributes of Barley (Hordeum vulgare L.) under Cadmium-Contaminated Soil
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43410%2F21%3A43920251" target="_blank" >RIV/62156489:43410/21:43920251 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.3390/su13169128" target="_blank" >https://doi.org/10.3390/su13169128</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/su13169128" target="_blank" >10.3390/su13169128</a>
Alternative languages
Result language
angličtina
Original language name
Supplemental Effects of Biochar and Foliar Application of Ascorbic Acid on Physio-Biochemical Attributes of Barley (Hordeum vulgare L.) under Cadmium-Contaminated Soil
Original language description
Biochar, prepared from organic waste materials, can improve the quality of contaminated soil areas. Biochar can be used as an economic centerpiece over other available resources and can properly utilize large amounts of waste. Soil contaminated with cadmium (Cd) is a worldwide problem that poses potential agricultural and human health hazards. Moreover, Cd toxicity causes serious problems for sustainable food production, especially in food crops like barley. High cadmium concentration in soil is phytotoxic and decreases plant growth and ultimately yields. Biochar and ascorbic acid in ameliorating Cd stress are economically compatible and consistent approaches in agriculture. The present study aimed to evaluate biochar's and foliar-applied ascorbic acid's influence on some growth and biochemical characteristics of barley (Hordeum vulgare L.) to Cd stress. The soil was supplemented with biochar 2% w/w and 20 mg Cd kg(-1). The foliar application of 30 mM ascorbic acid was done on plants. The results revealed that Cd stress decreased chlorophyll a, chlorophyll b, total chlorophyll, and carotenoids. It also increased oxidative stress indicators, i.e., APX, COD, POD, flavonoids, anthocyanin, phenolics, and electrolyte leakage, in barley with Cd-contamination. A significant enhancement in root and shoot length, gas exchange attributes, and chlorophyll contents validated the effectiveness of Bio + Asa treatments over all other treatments under Cd contamination. In conclusion, the sole applications of biochar and Asa in Cd contamination are also effective, but Bio + Asa is a better amendment for Cd stress alleviation in barley plants.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10511 - Environmental sciences (social aspects to be 5.7)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Sustainability
ISSN
2071-1050
e-ISSN
—
Volume of the periodical
13
Issue of the periodical within the volume
16
Country of publishing house
CH - SWITZERLAND
Number of pages
17
Pages from-to
9128
UT code for WoS article
000690028100001
EID of the result in the Scopus database
2-s2.0-85113478843