Effect of arbuscular mycorrhizal fungi on the physiological functioning of maize under zinc-deficient soils
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43410%2F21%3A43920356" target="_blank" >RIV/62156489:43410/21:43920356 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1038/s41598-021-97742-1" target="_blank" >https://doi.org/10.1038/s41598-021-97742-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-021-97742-1" target="_blank" >10.1038/s41598-021-97742-1</a>
Alternative languages
Result language
angličtina
Original language name
Effect of arbuscular mycorrhizal fungi on the physiological functioning of maize under zinc-deficient soils
Original language description
Zinc (Zn) deficiency can severely inhibit plant growth, yield, and enzymatic activities. Zn plays a vital role in various enzymatic activities in plants. Arbuscular mycorrhizal fungi (AMF) play a crucial role in improving the plant's Zn nutrition and mitigating Zn stress effects on plants. The current study was conducted to compare the response of inoculated and non-inoculated maize (YH 1898) in the presence of different levels of zinc under greenhouse conditions under a Zn deficient condition. There were two mycorrhizal levels (i.e., M + with mycorrhizae, M- without mycorrhizae) and five Zn levels (i.e., 0, 1.5, 3, 6, and 12 mg kg-1), with three replicates following completely randomized design. At the vegetative stage (before tillering), biochemical, physiological, and agronomic attributes were measured. The results showed that maize plants previously inoculated with AMF had higher gaseous exchange traits, i.e., a higher stomatal conductance rate, favoring an increased photosynthetic rate. Improvement in antioxidant enzyme activity was also observed in inoculated compared to non-inoculated maize plants. Moreover, AMF inoculation also played a beneficial role in nutrients availability and its uptake by plants. Higher Zn12 (12 mg Zn kg-1 soil) treatment accumulated a higher Zn concentration in soil, root, and shoot in AMF-inoculated than in non-inoculated maize plants. These results are consistent with mycorrhizal symbiosis beneficial role for maize physiological functioning in Zn deficient soil conditions. Additionally, AMF inoculation mitigated the stress conditions and assisted nutrient uptake by maize.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
40106 - Agronomy, plant breeding and plant protection; (Agricultural biotechnology to be 4.4)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Scientific Reports
ISSN
2045-2322
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
16 September
Country of publishing house
GB - UNITED KINGDOM
Number of pages
11
Pages from-to
18468
UT code for WoS article
000696635300008
EID of the result in the Scopus database
2-s2.0-85115332747